Orthogonality of the trigonometric system
Formulas
\(\begin{flalign*} &\int_{-\pi}^\pi \cos nx \cos mx = \begin{cases} 0 & (n \neq m) \\ \pi & (n = m \neq 0) \\ 2\pi & (n = m = 0) \end{cases}\\ \\ &\int_{-\pi}^\pi \sin nx \sin mx = \begin{cases} 0 & (n \neq m) \\ \pi & (n = m \neq 0) \\ 0 & (n = m = 0) \end{cases}\\ \\ &\int_{-\pi}^\pi \sin nx \cos mx = 0 \end{flalign*}\)
Derivation
(i)
First, we can apply trigonometric addition formulas.
By the symmetry of the cosine function about the x-axis, we can derive the result as follows.
\[\begin{flalign*} \int_{-\pi}^\pi \cos nx \cos mx = \begin{cases} 0 & (n \neq m) \\ \pi & (n = m \neq 0) \\ 2\pi & (n = m = 0) \end{cases} && \end{flalign*}\](ii)
Derivation of (ii) is similar to the one in (i).
(iii)
Applying trignometric addtion formulas is same.
However, by the symmetry of the sine function about the origin, the result of the formula is always 0.
\[\begin{flalign*} \int_{-\pi}^\pi \sin nx \cos mx = 0 && \end{flalign*}\]